
ICCSE’21 International Conference on Contemporary approach on revolutionary ISBN: 978-81-910765-1-6

Science and Engineering, April 9-10, 2021

A New Technique for Image Compression Using Linear Algebra with Python

Algorithm

Dr.S.Karthigai Selvam1 and Dr.S.Selvam2
1Assistant professor, Department of Mathematics,

N.M.S.S.V.N. College, Madurai – 625 019, Tamil Nadu, India

E-mail : s.karthic4@gmail.com
2Head & Assistant Professor, Department of Computer Applications,

N.M.S.S.V.N. College, Madurai – 625 019, Tamil Nadu, India

E-mail : s.selvammphil@gmail.com

Abstract: In recent days, the data are transformed in the form of

multimedia data such as images, graphics, audio and video. A large

amount of storage is needed for Image data. Minimize the

redundancy of Image data using the compression concept such as

Lossy Compression Techniques. Our proposed method shows the

disadvantages of SVD function available in the Python language.

Our proposed technique is compared to few other compression

standard methods. This proposed method shows that the running

time is very low. We proved that our proposed image compression

methods is better than any other methods.

Keywords: Image Compression, Singular Value Decomposition,

MSE, Lossy image compression, PSNR.

1 Introduction

The Singular Value Decomposition(SVD) is eigen-

decomposition and helps to examine rectangular matrices. It

used some applications such as data mining, search engines,

digital image processing etc. The main aim of this paper is to

show the SVD function used for image compression.

Decreasing the storage helps to fast loading of images in the

website and servers. It will reduce the loading time of the

webpage. Our intention is to decrease the storage and present

without lossy of data in the input image.

2 Existing Methods

Now-adays, there are various image compression techinques

are used to storage images. An emprical study of few standard

methods such as lossy and lossless techniques. Lossless

compression gives, there is no data losses and also reserve the

reconstructed images. We studied various work related to

SVD with image compression methods.

 Generally, SVD is a lossy compression technique

which achieves compression by using a smaller rank to

approximate the original matrix representing an image.

Furthermore, lossy compression yields good compression

ratio comparing with lossless compression while the lossless

compression gives good quality of compressed images.

 There are various works related to SVD with image

compression methods. Awwal et al.[7] presented new

compression technique using SVD and the Wavelet

Difference Reduction. A technique based on Wavelet-SVD,

which used a graph coloring technique in the quantization

process, is presented in[8]. Ranade et al.[9] suggested a

variation on SVD based image compression. This approach is

a slight modification to the original SVD algorithm, which

gives much better compression than the standard compression

using SVD method.

3 Image Compression Technique Using

SVD
The main idea is to produce similarity of image using less

storage and compression using SVD function. Images are

represented by matrices with every pixel in an image is called

as element.

 There are two algorithm are used namely Python

SVD function and SVD Power Method.

3.1 Algorithm of Python SVD Function
 We used to compute svd of a matrix in python. The

svd function returns U,s,V .

• U has left singular vectors in the columns

• s is rank 1 numpy array with singular values

• V has right singular vectors in the rows -equivalent to V

transpose in traditional linear algebra literature

 The reconstructed of the original matrix.

reconst_matrix =

np.dot(U[:,:k],np.dot(np.diag(s[:k]),V[:k,:]))

def compress_svd(image,k):

"""

Perform svd decomposition and truncated (using k singular

 values/vectors) reconstruction

returns

reconstructed matrix reconst_matrix, array of singular

values s

"""

U,s,V = svd(image,full_matrices=False)

reconst_matrix = np.dot(U[:,:k],np.diag(s[:k]),V[:k,:]))

return reconst_matrix,s

3.2 Algorithm of SVD Power Method

Input: A matrix A (R)nm, a block-vector

 V = V(0) Rms and a tolerance tol

Output: An orthogonal matrices

 U = [u1,u2,...,us] Rns

 V = [v1,v2,...,vs] Rms

 and a positive diagonal matrix

 = diag(1,2,...,s)

 such that : AV = U

 While (err > tol) do

 AV = QR(factorization QR),

 U Q(:, 1 : s)

 (the s first vector colonne of Q)

 ICCSE’21 International Conference on Contemporary approach on revolutionary ISBN: 978-81-910765-1-6

Science and Engineering, April 9-10, 2021

 ATU = QR,

 V Q(:, 1 : s) and R(1 : s, 1 : s)

 err = ||AV - U||

 End

3.3 Proposed Image Compression Technique

The proposed work is to decreasing the duplication of the

image and transfer data to effectively. Our proposed method

is used to enhanced the Block SVD Power method and also

developed an new algorithm for compression of image. Fig.

1 shows the new Architecture of Image Pre-Processing using

SVD.

 By using SVD, data can take first singular value. It

has a huge amount of Image information. From this, some

singular value is denoted image with lightly distinct from the

original image. The original image may be color image with

RGB color component (or) may be grayscale image.

 In order to creating new image with Python SVD

function as indicated in the Fig. 1, we use :

 Icomp = U(:, 1 : K) (1 : K, 1 : K) (V(:, 1 : K)T)

 (1)

 Our new algorithm for Image compression that

reduce few disadvantage of existing method of Python SVD

function. Our proposed method modify the calculation of

SVD for every component step and entries in the Image 1 are

computing using Block SVD Power method by instead of

Python SVD function and substitution of k rank determined

by the equation (5).

 The result proved that our proposed method is

superior to any other compression techniques.

4 Experimental Results

Main aim of our proposed work is Image compression. Our

experiments were performed on several images available on

WANG Databases. Simulations were done in Python.

4.1 Measurement for comparison

To evaluate the performance of the proposed method, the

quality of the image is estimated using several quality

measurement variables like, Mean Square Error (MSE) and

Peak Signal-to-Noise Ratio (PSNR). These variables are

signal fidelity metrics and do not measure how viewers

perceive visual quality of an image.

4.1.1 Measurement of Compression Ratio

The degree of data reduction obtained by a compression

method can be evaluated using the compression ratio

percentage (Qcomp) defined by the formula:

 𝑄𝑐𝑜𝑚𝑝 =
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒
× 100

 (2)

4.1.2 Mean Square Error(MSE)

Percentage of MSE, which for two M N monochrome

images X and Y where one of the images is considered

noisy approximation of the other and is defined as follows:

 𝑒𝑀𝑆𝐸 =
1

𝑀𝑁
 ∑ ∑ [𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)]2𝑁−1

𝑗=0
𝑀−1
𝑖=0 × 100

 (3)

4.1.3 Peak Singal-to-Noise Ratio (PSNR)

Percentage of PSNR is measured in decibels (dB), and is only

meaningful for data encoded in terms of bits per sample bits

per pixel. For example, an image with 8 bits per pixel contains

integers from 0–255. PSNR is given by the following

equation:

 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
(2𝐵−1)

2

𝑒𝑀𝑆𝐸
× 100

 (4)

A high PSNR value indicates that there is less visual

degradation in the compressed image.

4.2 Image Compression

We test our method, we develop a user interface. The method

was applied to various and real images to demonstrate the

performances of the proposed algorithm of image

compression.

Here, we used 2 color images such as Giraffe and India

Gate available in WANG Database and one in grayscale.

Figures 4, 5, 6 and 7 show the test images and the resulting

compressed images using Python SVD function [14] and the

proposed compression method.

We recall that our goal is to approximate an image (matrix

of m n) using the least amount of information. Thereby, to

obtain a better quality of the compressed image using SVD,

we use the K rank determined by El Asnaoui et al. [14]:

 𝐾 =
𝑚×𝑛

𝑚+𝑛+1

 (5)

Where m and n are the size of original image.

ICCSE’21 International Conference on Contemporary approach on revolutionary ISBN: 978-81-910765-1-6

Science and Engineering, April 9-10, 2021

 (a) Girafe (b) India Gate

 (c) grayscale

Fig. 4 Original images

4.2.1 Analysis with Color Image

After rank K = 438, we obtain:

 (a) (b)

Fig. 5 Image compressed results obtained by: a. Python SVD function , b.

Proposed method

Table 1 Image compression results for Giraffe.jpg, 1024 ×

768, 858Kb, by using:
 Python SVD function Proposed method

K 𝑄𝑐𝑜𝑚𝑝 MSE PSNR 𝑄𝑐𝑜𝑚𝑝 MSE PSNR

25 0.0986 0.3082 0.3078 0.0750 0.4687 0.4800

50 0.0941 0.3122 0.3286 0.0741 0.4720 0.4968

75 0.0884 0.3346 0.3491 0.0739 0.4829 0.5076

100 0.0828 0.3550 0.3697 0.0737 0.4938 0.5185

125 0.0806 0.3696 0.3852 0.0736 0.5022 0.5266

150 0.0784 0.3841 0.4007 0.0735 0.5107 0.5348

175 0.0774 0.3960 0.4141 0.0735 0.5133 0.5373

200 0.0764 0.4079 0.4275 0.0735 0.5160 0.5399

225 0.0759 0.4187 0.4396 0.0734 0.5273 0.5505

250 0.0754 0.4296 0.4517 0.0734 0.5387 0.5612

275 0.0750 0.4402 0.4631 0.0733 0.5500 0.5724

300 0.0746 0.4508 0.4746 0.0733 0.5614 0.5836

325 0.0743 0.4614 0.4857 0.0733 0.5741 0.5982

350 0.0741 0.4720 0.4968 0.0733 0.5868 0.6128

375 0.0739 0.4829 0.5076 0.0732 0.6056 0.6380

400 0.0737 0.4938 0.5185 0.0732 0.6245 0.6633

425 0.0736 0.5025 0.5266 0.0732 0.6667 0.7162

438 0.0735 0.5107 0.5348 0.0732 0.7089 0.7691

 (a) (b)

Fig. 6 Image compressed results obtained by: a. Python SVD function , b.

Proposed method

Table 2 Image compression results for IndiaGate.jpg, 1024 ×

768, 858Kb, by using:
 Python SVD function Proposed method

K 𝑄𝑐𝑜𝑚𝑝 MSE PSNR 𝑄𝑐𝑜𝑚𝑝 MSE PSNR

25 0.0954 0.2762 0.3390 0.0707 0.4372 0.4694

50 0.0923 0.2840 0.3510 0.0698 0.4451 0.4844

75 0.0860 0.2984 0.3629 0.0696 0.4616 0.4982

100 0.0797 0.3128 0.3749 0.0694 0.4782 0.5120

125 0.0773 0.3256 0.3854 0.0693 0.4921 0.5240

150 0.0749 0.3383 0.3960 0.0692 0.5060 0.5359

175 0.0737 0.3507 0.4062 0.0691 0.5108 0.5401

200 0.0725 0.3632 0.4165 0.0690 0.5155 0.5443

225 0.0717 0.3759 0.4270 0.0689 0.5374 0.5665

250 0.0709 0.3886 0.4375 0.0688 0.5593 0.5888

275 0.0706 0.4021 0.4487 0.0688 0.5802 0.6107

300 0.0702 0.4156 0.4599 0.0688 0.6011 0.6326

325 0.0700 0.4303 0.4721 0.0687 0.6227 0.6522

350 0.0698 0.4451 0.4844 0.0687 0.6442 0.6719

375 0.0695 0.4616 0.4982 0.0687 0.6760 0.7091

400 0.0693 0.4782 0.5120 0.0686 0.7078 0.7464

425 0.0693 0.4921 0.5240 0.0686 0.7776 0.8380

438 0.0692 0.5060 0.5359 0.0687 0.8475 0.9297

4.2.2 Analysis with Grayscale Image
In order to compare this performance, we also applied the

new method to the gray scale image.

After rank K = 548, we obtain:

 (a) (b)

Fig. 7 Image compressed results obtained on the: a. Python SVD function,

b. Proposed method

Table 3 Image compression results for grayscale.jpg, 1024 ×

960, 480Kb, by using:
 Python SVD function Proposed method

K 𝑄𝑐𝑜𝑚𝑝 MSE PSNR 𝑄𝑐𝑜𝑚𝑝 MSE PSNR

25 0.0498 0.8034 0.2767 0.0406 0.0953 0.3953

50 0.0497 0.7850 0.2922 0.0405 0.0945 0.3840

75 0.0464 0.5589 0.3108 0.0406 0.0751 0.3955

100 0.0431 0.3327 0.3293 0.0407 0.0558 0.4070

125 0.0420 0.2511 0.3440 0.0410 0.0452 0.4173

 ICCSE’21 International Conference on Contemporary approach on revolutionary ISBN: 978-81-910765-1-6

Science and Engineering, April 9-10, 2021

150 0.0410 0.1695 0.3587 0.0412 0.0346 0.4276

175 0.0407 0.1320 0.3714 0.0412 0.0285 0.4371

200 0.0405 0.0945 0.3841 0.0412 0.0224 0.4467

225 0.0406 0.0751 0.3955 0.0410 0.0186 0.4556

250 0.0408 0.0558 0.4070 0.0409 0.0148 0.4646

275 0.0410 0.0452 0.4173 0.0407 0.0124 0.4732

300 0.0412 0.0347 0.4276 0.0406 0.0100 0.4818

325 0.0412 0.0285 0.4371 0.0405 0.0084 0.4902

350 0.0412 0.0224 0.4467 0.0404 0.0068 0.4986

375 0.0410 0.0186 0.4556 0.0403 0.0057 0.5066

400 0.0409 0.0148 0.4646 0.0402 0.0046 0.5146

425 0.0407 0.0124 0.4732 0.0401 0.0038 0.5240

450 0.0406 0.0100 0.4818 0.0401 0.0030 0.5335

475 0.0405 0.0084 0.4902 0.0401 0.0024 0.5448

500 0.0404 0.0068 0.4986 0.0401 0.0018 0.5562

525 0.0403 0.0057 0.5066 0.0401 0.0013 0.5722

548 0.0402 0.0046 0.5146 0.0401 0.0008 0.5883

4.2.3 Analysis with Other Methods

To evaluate the robustness of our scheme, we test it with

other methods like: [10, 13, 14]. Added experiment results

for two images are listed in Table 4.

Table 4 Image comparison with various algorithms

Color image (Fig. 4a)

Grayscale image

(Fig.4c)
𝑄𝑐𝑜𝑚𝑝 MSE PSNR 𝑄𝑐𝑜𝑚𝑝 MSE PSNR

BTC

method

[13]

0.092

7

0.620

9

0.302

0

0.053

9

0.161

1

0.260

9

BTC

method

[10]

0.073

4

0.079

6

0.391

2

0.039

8

0.190

2

0.353

6

BTC

method

[14]

0.067

2

0.027

4

0.437

5

0.028

4

0.034

7

0.427

6

SVD

method

[14]

0.073

5

0.002

9

0.534

8

0.040

2

0.004

7

0.514

6

Propos

ed

method

0.073

1

0.000

0

0.769

1
0.040

1

0.000

8

0.588

3

 In this paper, the proposed algorithm is compared

with the Python SVD function [14] and the other state-of-the-

art algorithms.

 Figs. 5, 6 and 7 shows that performance of our

proposed method by using this two approach are same to

original image. But quality of image is lacking in human

visual performance is determined by the measurement such

as PSNR, MSE and K rank.

 In this experiment , calculated K rank for different

images and also computed PSNR and MSE are tabulated in

three tables namely Table 1, 2 and 3. It proved that the

proposed method gives better performance compare to SVD.

Table 4 proposed method is compared to other methods. The

proposed method show that result is 1/3 of K rank compare

to various method. It is able to produce a compressed image

with good visual quality.

5 Conclusion

Our proposed method is used to overcome the limitations of

existing methods used in the Python SVD process. The results

showed that the proposed approach could be considered as a

solution for the development of image abstraction. Our

proposed method for image compression has been rapidly

demonstrated due to the minimal number of repetitions in the

compression algorithm.

Future Scope

The future purpose of this work is to use the SVD for

statistical applications to detect the relationship between data,

and to implement an abstract technique using the neural

network in the area representing the clinical picture with the

different threshold techniques associated with these

multiwavelets.

References

[1] Madhuri A.J.: "Digital Image Processing. An

Algorithmic Approach", pp. 175–217. PHI, New Delhi,

2006.

[2] Weinberger, M.J., Seroussi, G., Sapiro, G.: "The LOCO-

I lossless image compression algorithm: principles and

standardization into JPEG-LS", IEEE Transactions

Image Processing 2, pp. 1309–1324, 2000.

[3] Alkhalayleh, M.A., Otair, A.M.: "A new lossless method

of image compression by decomposing the tree of

Huffman technique", International journal of imaging &

robotics 15(2), pp. 79–96, 2015.

[4] Jianji, W., Nanning, Z., Yuehu, L., Gang, Z.: "Parameter

analysis of fractal image compression and its

applications in image sharpening and smoothing", Signal

Processing: Image Communication journal pp. 681– 687,

2013.

[5] Bilgin, A., Michael, W., Marcellin, M., Altbach, I.:

"Compression of electrocardiogram signal using

JPEG2000", IEEE Transactions on Communications

Electronics (ICIP) 49(4), pp. 833–840, 2003.

[6] Awwal, M.R., Anbarjafari, G., Demirel, H.: "Lossy image

compression using singular value decomposition and

wavelet difference reduction", Digital Signal Process 24,

pp. 117–123, 2014.

[7] Adiwijaya, M., Dewi, B.K., Yulianto, F.A., Purnama, B.:

"Digital image compression using graph coloring

quantization based on wavelet SVD", Journal of Physics

Conference Series 423(1)", pp. 012-019, 2013.

[8] Ranade, A., Mahabalarao, S.S., Kale, S.: "A variation on

SVD based image compression", Image and Vision

Computing journal 25(6), pp. 771–777, 2007.

[9] Doaa, M., Chadi, A.F.: "Image compression using block

truncation coding". Cyber J. Multidiscip. J. Sci. Technol.

J. Sel. Areas Telecommun. (JSAT), February, 2011.

[10] Delp, E.J., Mitchell, O.R.: "Image compression using

block compression", IEEE Transactions on

Communications 27(9), pp. 1335–1342, 1979.

[11] Tsou, C.C., Wu, S.H., Hu, Y.C.: "Fast pixel grouping

technique for block truncation coding", In: Workshop on

Consumer Electronics and Signal Processing

(WCEsp05), Yunlin, pp. 17–18 Nov, 2005.

ICCSE’21 International Conference on Contemporary approach on revolutionary ISBN: 978-81-910765-1-6

Science and Engineering, April 9-10, 2021

[12] El Abbadi, N.K., Al Rammahi, A., Redha, D.S., Abdul-

Hameed, M.: "Image compression based on SVD and

MPQ-BTC", Journal 0f Computer Science 10(10), pp.

2095–2104, 2014.

[13] El Asnaoui, K., Chawki, Y.: "Two new methods for

image compression", International journal of imaging &

robotics 15(4), pp. 1–11, 2015.

[14] Bentbib, A.H., Kanber, A.: "Block power method for

SVD decomposition", Analele Stiintifice ale

Universitatii Ovidius Constanta Seria Matematica

23(2), pp. 45–58, 2015.

